Total Pageviews

Thursday 19 January 2012

NanoLiteratureCan

Articles Related to Nanoparticles in Cancer
(free articles: courtesy of FreeFullPDF, PubMed etc.)

1. Multistage nanoparticle delivery system for deep penetration into ...
Current Food and Drug Administration-approved cancer nano- therapeutics ... After extravasation into tumor tissue, the nano- particles shrink to ...

2. Development of an inflammation-associated colorectal cancer model and its application for research on carcinogenesis and chemoprevention
Inflammatory bowel disease, including ulcerative colitis and Crohn’s disease is a longstanding inflammatory disease of intestine with increased risk for colorectal cancer development. Several molecular events involve in chronic inflammatory process may contribute to...

3. Therapeutic Potentials of Silver Nanoparticle Complex of alpha-lipoic acid
The results of several studies suggest that nanocrystalline silver specifically may play a role in altering or compressing the inflammatory events in wounds and facilitating the early phases of wound healing....
Silver nanoparticles have been known to posses excellent free radical scavenging, antimicrobial and antiinflammatory activities...

4. Materials and methods for reducing inflammation by inhibition of the atrial natriuretic peptide receptor
The present inventors have demonstrated that, in contrast to prior knowledge that ANP decreases inflammatory mechanisms in the macrophages, ANP actually increases lung inflammation and this is caused by ANP-NPRA signaling. This signaling can be blocked by utilizing a small interference RNA (siRNA) approach, in which specific siRNAs targeted to NPRA can significantly decrease the inflammation. This results in amelioration of inflammation in allergic disease which may be caused by allergens and exacerbated by respiratory viral infections, pollutants, and smoke. Also, this may be beneficial in the amelioration of inflammation and tumorigenesis in cancers...

5. Nanoscience in diagnostics - a short review
Various nanotechnologies with potential applications in molecular diagnostics are nanotechnology on a chip (nanoChipTM, nanoArraysTM), Nanoparticle technologies (Gold particles, Nanobarcodes, Quantum dot technology, Nanoparticle probes) and other technologies (Nanowires, Nanopore technology, Cantilever arrays, DNA nanomachines for molecular diagnostics, Nanosensors, Resonance light scattering (RLS) technology)...

6. Advances in the field of NanoOncology - Review year 2010
Personalization of cancer therapies is based on a better understanding of the disease at the molecular level, which is facilitated by nanobiotechnology. Nanobiotechnology will facilitate the combination of diagnostics with therapeutics, which is an important feature of a personalized medicine approach to cancer....

7. Micro and Nanotechnologies - From R&D to drug delivery
Micro and nanotechnologies will have a high impact on the pharmaceutical industry making the way to personalized therapy for better treatment efficiency and fewer side effects,.
Micro and nanotechnologies will support pharmaceutical companies in their development strategy by providing solutions to:
• Discover new drug candidates and therapeutic pathways
• Reduce new therapies development time
• Facilitate drugs launching with adapted delivery systems
• Provide better treatment performances
• Extend pharmaceutical products lifecycle thanks to innovative delivery systems.

This article gives an overview of micro and nanotechnologies and the way they impact the pharmaceutical industry using product and development case studies.

8. Silver nanoparticles as a new generation of antimicrobials
Silver has been in use since time immemorial in the form of metallic silver, silver nitrate, silver sulfadiazine for the treatment of burns, wounds and several bacterial infections. But due to the emergence of several antibiotics the use of these silver compounds has been declined remarkably. Nanotechnology is gaining tremendous impetus in the present century due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical and optical properties of metals. Metallic silver in the form of silver nanoparticles has made a remarkable comeback as a potential antimicrobial agent. The use of silver nanoparticles is also important, as several pathogenic bacteria have developed resistance against various antibiotics. Hence, silver nanoparticles have emerged up with diverse medical applications ranging from silver based dressings, silver coated medicinal devices, such as nanogels, nanolotions, etc.

9. The bactericidal effect of silver nanoparticles.
Nanotechnology is expected to open new avenues to fight and prevent disease using atomic scale tailoring of materials. Among the most promising nanomaterials with antibacterial properties are metallic nanoparticles, which exhibit increased chemical activity due to their large surface to volume ratios and crystallographic surface structure. The study of bactericidal nanomaterials is particularly timely considering the recent increase of new resistant strains of bacteria to the most potent antibiotics. This has promoted research in the well known activity of silver ions and silver-based compounds, including silver nanoparticles. The present work studies the effect of silver nanoparticles in the range of 1-100 nm on Gram-negative bacteria using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). Our results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of approximately 1-10 nm.

10. Silver nanoparticles: green synthesis and their antimicrobial activities
This review presents an overview of silver nanoparticles (Ag NPs) preparation by green synthesis approaches that have advantages over conventional methods involving chemical agents associated with environmental toxicity. Green synthetic methods include mixed-valence polyoxometallates, polysaccharide, Tollens, irradiation, and biological. The mixed-valence polyoxometallates method was carried out in water, an environmentally-friendly solvent. Solutions of AgNO(3) containing glucose and starch in water gave starch-protected Ag NPs, which could be integrated into medical applications. Tollens process involves the reduction of Ag(NH(3))(2)(+) by saccharides forming Ag NP films with particle sizes from 50-200 nm, Ag hydrosols with particles in the order of 20-50 nm, and Ag colloid particles of different shapes. The reduction of Ag(NH(3))(2)(+) by HTAB (n-hexadecyltrimethylammonium bromide) gave Ag NPs of different morphologies: cubes, triangles, wires, and aligned wires. Ag NPs synthesis by irradiation of Ag(+) ions does not involve a reducing agent and is an appealing procedure. Eco-friendly bio-organisms in plant extracts contain proteins, which act as both reducing and capping agents forming stable and shape-controlled Ag NPs. The synthetic procedures of polymer-Ag and TiO(2)-Ag NPs are also given. Both Ag NPs and Ag NPs modified by surfactants or polymers showed high antimicrobial activity against gram-positive and gram-negative bacteria. The mechanism of the Ag NP bactericidal activity is discussed in terms of Ag NP interaction with the cell membranes of bacteria. Silver-containing filters are shown to have antibacterial properties in water and air purification. Finally, human and environmental implications of Ag NPs to the ecology of aquatic environment are briefly discussed.

11. Antifungal activity of silver nanoparticles against Candida spp
The antifungal activity of the silver nanoparticles (NPs) prepared by the modified Tollens process was evaluated for pathogenic Candida spp. by means of the determination of the minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), and the time-dependency of yeasts growth inhibition. Simultaneously the cytotoxicity of the silver NPs to human fibroblasts was determined. The silver NPs exhibited inhibitory effect against the tested yeasts at the concentration as low as 0.21 mg/L of Ag. The inhibitory effect of silver NPs was enhanced through their stabilization and the lowest MIC equal to 0.05 mg/L was determined for silver NPs stabilized by sodium dodecyl sulfate against Candida albicans II. The obtained MICs of the silver NPs and especially of the stabilized silver NPs were comparable and in some cases even better than MICs of the conventional antifungal agents determined by E-test. The silver NPs effectively inhibited the growth of the tested yeasts at the concentrations below their cytotoxic limit against the tested human fibroblasts determined at a concentration equal to 30 mg/L of Ag. In contrast, ionic silver inhibited the growth of the tested yeasts at the concentrations comparable to the cytotoxic level (approx. 1mg/L) of ionic silver against the tested human fibroblasts.

12. Lysozyme catalyzes the formation of antimicrobial silver nanoparticles
Hen egg white lysozyme acted as the sole reducing agent and catalyzed the formation of silver nanoparticles in the presence of light. Stable silver colloids formed after mixing lysozyme and silver acetate in methanol and the resulting nanoparticles were concentrated and transferred to aqueous solution without any significant changes in physical properties. Activity and antimicrobial assays demonstrated lysozyme-silver nanoparticles retained the hydrolase function of the enzyme and were effective in inhibiting growth of Escherichia coli, Staphylococcus aureus, Bacillus anthracis, and Candida albicans. Remarkably, lysozyme-silver nanoparticles demonstrated a strong antimicrobial effect against silver-resistant Proteus mirabilis strains and a recombinant E. coli strain containing the multiple antibiotic- and silver-resistant plasmid, pMG101. Results of toxicological studies using human epidermal keratinocytes revealed that lysozyme-silver nanoparticles are nontoxic at concentrations sufficient to inhibit microbial growth. Overall, the ability of lysozyme to assemble silver nanoparticles in a one-step reaction offers a simple and environmentally friendly approach to form stable colloids of nontoxic silver nanoparticles that combine the antimicrobial properties of lysozyme and silver. The results expand the functionality of nanomaterials for biological systems and represent a novel antimicrobial composite for potential aseptics and therapeutic use in the future.

13. Past, present, and future of gold nanoparticles
Colloidal gold nanoparticles have been around for centuries. Historically, the use of gold nanoparticles has been predominantly found in the work of artists and craftsman because of their vivid visible colors. However, through research, the size, shape, surface chemistry, and optical properties of gold nanoparticles are all parameters which are under control and has opened the doors to some very unique and exciting capabilities. The purpose of this chapter is to review some of the important discoveries and give background in regard to gold nanoparticles. First, the most common wet chemical methods toward their synthesis are reviewed, specifically discussing routes toward spherical colloidal synthesis and controllable rod formation. Next, because many applications of gold nanoparticles are a result of their magnificent interactions with light, some of the basic optical-electronic properties and the physics behind them are elucidated. Finally, by taking advantage of the optical-electronic properties, numerous proven applications for gold nanoparticles are discussed, as well as their predicted applications in the future.

14. Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis.
B-Chronic Lymphocytic Leukemia (CLL) is an incurable disease predominantly characterized by apoptosis resistance. We have previously described a VEGF signaling pathway that generates apoptosis resistance in CLL B cells. We found induction of significantly more apoptosis in CLL B cells by co-culture with an anti-VEGF antibody. To increase the efficacy of these agents in CLL therapy we have focused on the use of gold nanoparticles (GNP). Gold nanoparticles were chosen based on their biocompatibility, very high surface area, ease of characterization and surface functionalization. We attached VEGF antibody (AbVF) to the gold nanoparticles and determined their ability to kill CLL B cells. Gold nanoparticles and their nanoconjugates were characterized using UV-Visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). All the patient samples studied (N = 7) responded to the gold-AbVF treatment with a dose dependent apoptosis of CLL B cells. The induction of apoptosis with gold-AbVF was significantly higher than the CLL cells exposed to only AbVF or GNP. The gold-AbVF treated cells showed significant down regulation of anti-apoptotic proteins and exhibited PARP cleavage. Gold-AbVF treated and GNP treated cells showed internalization of the nanoparticles in early and late endosomes and in multivesicular bodies. Non-coated gold nanoparticles alone were able to induce some levels of apoptosis in CLL B cells. This paper opens up new opportunities in the treatment of CLL-B using gold nanoparticles and integrates nanoscience with therapy in CLL. In future, potential opportunities exist to harness the optoelectronic properties of gold nanoparticles in the treatment of CLL.

15. Gold revolution--gold nanoparticles for modern medicine and surgery.
Nanotechnology is a new and exciting branch of science which offers enormous potential for development of medicine and surgery. Gold nanoparticles (GNP) is just one of a variety of nano products which will be available for physician of the future. GNP will give us more effective treatments and diagnosis. We are able to conjugate GNP with peptides, drugs, and other molecules to gain astonishing effects. High quality, non-invasive imaging will inevitably lead to astonishing accuracy diagnostic tools with effective use during surgery. The same principles may be used in the future for drug delivery and thermal treatment of cancer. Detailed DNA detection and regulation may become everyday use technology, in medicine with support from GNP based tools. Bacterial diagnostics and nerve repair are relatively poorly researched areas of application of GNP with possibly astonishing therapeutic effects. Non-invasive clearance of arteriosclerotic plagues with GNP shows a great prospect for further development of minimally invasive surgery. However, before all of those tools will become available for clinicians, in depth toxicology research as well as transitional research and design have to be done to ensure safe clinical practice with maximal benefit for patients.

16. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy?
Nanotechnology is the design and assembly of submicroscopic devices called nanoparticles, which are 1-100 nm in diameter. Nanomedicine is the application of nanotechnology for the diagnosis and treatment of human disease. Disease-specific receptors on the surface of cells provide useful targets for nanoparticles. Because nanoparticles can be engineered from components that (1) recognize disease at the cellular level, (2) are visible on imaging studies, and (3) deliver therapeutic compounds, nanotechnology is well suited for the diagnosis and treatment of a variety of diseases. Nanotechnology will enable earlier detection and treatment of diseases that are best treated in their initial stages, such as cancer. Advances in nanotechnology will also spur the discovery of new methods for delivery of therapeutic compounds, including genes and proteins, to diseased tissue. A myriad of nanostructured drugs with effective site-targeting can be developed by combining a diverse selection of targeting, diagnostic, and therapeutic components. Incorporating immune target specificity with nanostructures introduces a new type of treatment modality, nano-immunochemotherapy, for patients with cancer. In this review, we will discuss the development and potential applications of nanoscale platforms in medical diagnosis and treatment. To impact the care of patients with neurological diseases, advances in nanotechnology will require accelerated translation to the fields of brain mapping, CNS imaging, and nanoneurosurgery. Advances in nanoplatform, nano-imaging, and nano-drug delivery will drive the future development of nanomedicine, personalized medicine, and targeted therapy. We believe that the formation of a science, technology, medicine law-healthcare policy (STML) hub/center, which encourages collaboration among universities, medical centers, US government, industry, patient advocacy groups, charitable foundations, and philanthropists, could significantly facilitate such advancements and contribute to the translation of nanotechnology across medical disciplines.

17. Biomedical nanotechnology for cancer
Nanotechnology may hold the key to controlling many devastating diseases. In the fight against the pain, suffering, and death due to cancer, nanotechnology will allow earlier diagnosis and even prevention of malignancy at premalignant stages, in addition to providing multimodality treatment not possible with current conventional techniques. This review discusses nanotechnology already used in diagnostic and therapeutic applications for cancer. Also addressed are theoretic and evolving uses of nanotechnology, including multifunctional nanoparticles for imaging and therapy, nanochannel implants for controlled release of drugs, nanoscale devices for evaluation of proteomics and genomics, and diagnostic techniques that take advantage of physical changes in diseased tissue.

This project (Biological Interactions of Nanomaterials (BIN)) focuses on biological characterization of nanomaterials of particular interest to the Air Force Research Laboratory, Biosciences and Protection Division, Applied Biotechnology Branch, Wright-Patterson, USA. This report describes the basic mechanism of biological interactions of engineered nanomaterials, and explains potential toxicities arising from physicochemical properties uniquely associated with nano-scale structures, including size, shape, surface charge, surface composition, and in some cases surface structure. This research acquired the fundamental knowledge needed to improve understanding of nano-bio interaction mechanisms and provided in-depth analyses of corresponding effects on biological systems. This knowledge will help to improve nanomaterial safety strategies for the protection of both human and environmental health.